If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2-20x+5=0
a = -2; b = -20; c = +5;
Δ = b2-4ac
Δ = -202-4·(-2)·5
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{110}}{2*-2}=\frac{20-2\sqrt{110}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{110}}{2*-2}=\frac{20+2\sqrt{110}}{-4} $
| 36)10=j/6 | | 35)3z=36 | | 34)20=4x | | x^2-16x+70=6 | | 3=11/x+4 | | 33)f/3=9 | | 2x−13=5x−64. | | 59=-17+3x | | 32)4w=16 | | 3+4d-14=15=15-5d-4d | | (6x+50)=(x^2+10) | | w^2-16w+70=6 | | 10x+50=5x+100 | | 9x+7=-8+5x+23 | | 7x+12=(-2) | | 32=t-20 | | (x/3)-7=(-3) | | 4d-11=15=9d | | 0.75/6=n/24 | | 31)7=p/5 | | -5x=8x | | (n/5)+6=24 | | 2b^2+5b-3=0 | | (x+6)+(x-2)=90 | | (x/2)-7=65 | | 16t^2-55t+25=0 | | (n/3)+4=13 | | 3(x+3)=4(2x-4)-4 | | 5x/2+3/2=4 | | 29)26=13d | | w/8=-1 | | 2(4x-12)=8 |